Integrated Luminosity

Collider Run IIA Integrated Luminosity

Peak Luminosity

Collider Run IIA Peak Luminosity

Initial Luminosity

Protons to Collision

Phars to Collision

- Parse the Squeeze (tune up)
- Collimators (no beam available)
- 36 X 12 to test new Helix

Store #1128

First 36 X 12

Most recent 36 X 12

- Pbar stack moved to central orbit
- change the lattice
- compare heating rates

Conclusions;

- The 4-D and 6-D phase space products showed almost a factor of 3 lower emittance and growth rate
- The initial conditions between the current lattice and the study lattice were not the same, another study needed

Transverse Heating terms

Transverse Heating Rates

6-D Phase Space Growth Rate

- Beam loading compensation
- Transverse emittance (growth) vs. Booster intensity

53 014 000 Hz 53 014 000 Hz ogMag

Beam loading Compensation on Station 1

Beam loading Compensation on Station 2

Horizontal Emittance at 150 GeV for 8 Booster Turns vs # of Bunches

7.5 MHz Coalescing for RR Injection